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SUMMARY

An algorithm to simulate steady, viscous free surface flows is presented in this paper. A Picard-type approach
wherein the flow and free surface updates are performed alternately is utilized to iterate for a solution. The
procedure is intended for large-scale two- or three-dimensional problems. A surface-intrinsic co-ordinate system
which facilities representation of general free surface shapes is used. Using a Galerkin finite element method
(GFEM), two free surface updates, namely kinematic and normal stress updates are formulated. It is shown that the
effects of surface tension, surface tension gradients and imposition of contact angles can be simulated elegantly
within the framework of the GFEM. A novel feature of the updates is that the deformations are sought in a
direction normal to the current iterate free surface shape, with the result that the method is ideally suited when
used in conjunction with an automatic mesh generator. With the normal stress update a volume constraint can also
be imposed. A segregated method is utilized to solve iteratively one degree of freedom at a time for the solution of
the flow variables. As a result, the memory and disc space requirements are minimal. Sample problems in
extrusion, coating and crystal growth are presented to clearly illustrate the convergence behaviour and accuracy of
the algorithm.
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1. INTRODUCTION

An interfacial region of molecular proportions is present between two immiscible fluids, the extent of
which provides for a smooth change in physical properties. From a continuum viewpoint the tangible
influence of this interface is an interfacial tension, a consequence of molecular forces of attraction. It is
this force that accounts for the pressure difference across drops and bubbles. Engineering problems
which possess interfaces of immiscible fluids are wide and varied. Common examples that are of
current interest include extrudate swell, crystal growth from melts, coating flows, electrolytic cells, etc.
The ability to predict the interface shapes in conjunction with fluid flow and heat flow in the bulk fluids
is of utmost importance in these and other engineering problems. For a continuum treatment of viscous
fluid flow the existence of such an interface poses additional complexities through non-linear boundary
conditions that need to be satisfied thereon. Such non-linearity is further accentuated in situations
where non-uniform temperature, species or electric field effect spatial gradients in the interfacial
tension are present. It is for this reason that these problems are intractable to analytical techniques
except under excessively simplifying assumptions and have been pursued as an active area of research
in the realm of computational fluid dynamics.

In the following sections an algorithm to simulate steady, viscous external flows is presented. For
compactness and clarity we devote our attention to cases where the interface demarcates the fluid of
interest and a tenuous vapour. In addition, we shall assume that the fluid is viscous and incompressible.
The special case of free boundary problems of inviscid fluids has received considerable attention in the
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literature. The subject of viscous free surface flows, which has received much less scrutiny, is the focus
of our attention.

The numerical solution of viscous free surface problems was pioneered by the studies of Nickell et
al.! and Harlow and Welch.2 The two studies approached the problem through different representations
of the free surface and solution methods. Nickell ef al.' assumed the free surface to be piecewise
continuous, whereas Harlow and Welch? represented the surface as a collection of piecewise
discontinuous segments (a staircase type). The former is ideally suited to a boundary element or finite
element discretization of the equations and researchers of free surface algorithms in those areas
continued their efforts based on Nickell ez al.’s! approach. Harlow and Welch’s? approach, on the other
hand, lends itself suitably to a finite-difference- or control-volume-based discretization of the equations
and the research community®~ in those areas progressed along these lines.

In the finite element area, the study of Nickell ef al.' is noteworthy in that it was the earliest
application of the finite element method to the solution of free surface flows. By first assuming a free
surface shape, they solved for the flow solution subject to the satisfaction of normal and tangential
stress conditions. Then they determined the free surface deformation necessary to satisfy the other
boundary condition of no normal flow. They repeated in succession the solution of flow variables and
free surface updates until a converged solution was attained for both the free surface shape and the flow
field. Although their study was performed for a fluid with vanishing surface tension, from an
algorithmic viewpoint it proved the feasibility of a Picard-type approach to the solution of free surface
flows. In addition, although Nickell et al.' used the kinematic constraint as the boundary condition to
update the free surface, if the fluid has a finite surface tension, one of the stress boundary conditions
can be used to do so. Silliman and Scriven® comprehensively addressed the issue of proper choice of
boundary conditions to perform free surface updates. Working with two-dimensional geometries, they
provided two free surface updates, namely kinematic and normal stress iterations. They claimed that
the former is suitable for small or vanishing surface tension, while the latter should be preferred for
large or finite surface tension problems. The key feature of their algorithms is the ability to represent
the free surface as a height function. Other studies that relied on the height function approach include
those by Fredericksen and Watts’ and Keunings.® Orr et al.® addressed many meniscus problems in 3D
by representing the free surface height as a function of the horizontal co-ordinates.

The Picard approaches of Nickell et al.! and Silliman and Scriven® possess only a linear rate of
convergence. To obtain quadratic convergence rates, Saito and Scriven'® proposed a Newton-based
algorithm using splines that also overcame some of the limitations of the height function representation
of Silliman and Scriven.® The Newton-based approach was adopted for 2D problems by many others,
including Kistler and Scriven,'! Kheshgi and Scriven,'? Coyle et al.'® and Engelman and Sani.'*
Karagiannis et al.'® extended the same method to three-dimensional problems and have reported
solutions for extrudate swell of fluid flow out of square, rectangular and other non-trivial shapes of
dies. Their analysis ignores the effects of surface tension. The alternative to the Newton method of
Saito and Scriven'® is the total linearization method of Cuvelier and Schulkes,'® who also solved a
coupled set of equations along with the free surface shapes. Ho and Patera'” provide yet another
alternative to the height function method. They developed a transient algorithm based on a local
surface co-ordinate system suitable for periodic or closed surfaces. The arbitrary Lagrangian—Eulerian
(ALE) method of Ramaswamy and Kawahara'® offers another approach to the solution of viscous free
surface flows.

It is evident that an algorithm that handles general free surface shapes with the ability to handle
contact angle conditions is highly desirable for the simulation of viscous free surface problems. While
the Newton method proposed by Saito and Scriven'® performs quite satisfactorily in two-dimensional
geometries, an extension of the same to three dimensions will be memory- and CPU-time-intensive, as
illustrated by the work of Karagiannis et al.'> We believe that a Picard-type iteration in combination
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with a segregated solution approach will substantially reduce the demand on computational resources.
With this in mind we present one such algorithm that requires just C° continuity of the surface,
includes effects of interfacial tension and imposes contact angle conditions naturally in the weak form.

2. GOVERNING EQUATIONS

For an elegant exposition of the algorithm we will restrict our attention to the steady, incompressible
flow of a Newtonian fluid. The interface is assumed to exist in the presence of a vapour of vanishing
viscosity. The Navier-Stokes equations under such assumptions are

;=0 M

pui; j = Tj ; + f;. ()

In these equations u is the velocity, T is the total stress and f is the body force. The fluid density is
represented by p.
The total stress tensor T comprises the pressure p and the deviatoric stress T:

T‘j = —péu + T‘rj.

A constitutive equation is necessary to define the relationship between stress and strain. This can be
written for a Newtonian fluid as

I
rij = E(ui'j + uj. ,-).
The governing equations (1) and (2) are subject to the boundary conditions
u;=u onTl, 3)

where ', and T, signify the boundaries on which Dirichlet conditions on velocity and stress are
applied. In addition to the above boundary conditions, the following conditions must be satisfied at the
fluid-vapour interface I',:

ui’l,’ = 0, (5)
n Tt = 4o, (6)
nT;in; = —py+ oH, @)

where n is the outward-pointing normal and t is a tangential direction on the free surface. In the above
equations p, is the ambient pressure, ¢ is the surface tension and H is the total curvature of the fluid—
vapour interface. Since the flow is assumed steady, the kinematic constraint is simply a statement of no
normal flow. Spatial gradients in surface tension, as seen from equation (6), can induce tengential
stresses on the bulk fluid. Such gradients can be the cause of non-uniform temperature or surfactant
distribution. The comma (= V,) operator here is the surface gradient operator.'® At the interface the
difference in normal stress between fluid and vapour is compensated by the forces of interfacial
tension.

If the flow is assumed to be slow, the equations can be made dimensionless by characteristic scales
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of L, U and uU/L. The Navier-Stokes equations can then be cast in a non-dimensional form as
ui,i = 07 (8)

B
Reujui|j=T-~<+e,~’—§, (9)

ijij

where Re = pUL/pu, Ca = pU /o, and Bo = pgL?/a,, subject to Dirichlet conditions on velocity and
stress. The surface tension gy is the reference value. In the momentum equation the body force is
assumed to be only due to gravitational attraction that acts in the direction specified by the unit vector
e. On the free surface the interfacial boundary conditions dictate

ui"i = 0, (10)
Can Tt =t ;. (1)
1

In the above equations, three dimensionless groups appear. Re is the Reynolds number, the ratio of
inertial and viscous forces. The capillary number Ca measures the relative importance of viscous and
surface tension forces. The ratio of gravity forces to interfacial tension is the Bond number Bo. The
ratio of Bond and capillary numbers is often referred to as the Stokes number. We now turn to the weak
form of these equations to describe how the free surface boundary conditions come into play.

3. GALERKIN FINITE ELEMENT METHOD
3.1. Weak formulation of governing equations

Using the Galerkin finite element method and the Green—Gauss theorem, the weak form of equation
(2) can be written as

J yu; ; =0, (13a)
v
Bo
J Repyuu, ;dv— | @ pdv+ | @ 4 ;dv+ | @ u,dv=1 nT,p,ds+ Ca P dv,
4 14 14 14 r v La
(13b)

where ¥ is the basis function for pressure and ¢ is the basis function for velocities in the computational
domain V. The traction terms T can be applied to I, where the stresses are prescribed, while on I'; the
free surface boundary conditions of equations (11) and (12) are applied.

The weak form of the equations can be solved either in a coupled or in an uncoupled fashion. Saito
and Scriven'® solve the set of equations using a Newton method which allows for simultaneous
evaluation of flow field and free surface position. Such a method is quadratic in convergence rates but
memory- and CPU-intensive, as discussed previously. For this reason we opt to use a fixed point
iteration wherein the flow solution and free surface update are performed successively in an iterative
fashion. When the flow solution is to be obtained on a free surface iterate, only two of the three
equations (10)—(12) can be satisfied on the surface. As observed by Silliman and Scriven,® the choice
of the distinguished boundary condition is contingent upon the capillary number. At low capillary
numbers the normal stress balance is the proper condition to update the free surface. In high or infinite
capillary number situations the kinematic constraint is the distinguished condition that should be used
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to update the shape. In the following subsections we provide a description of these two updates
performed on general free surface shapes. We will, however, first provide details of how we obtain the
flow solution for a given free surface iterate.

3.2. The segregated method

For the solution of the flow field we used the segregated algorithm of Haroutunian et al.2® This
algorithm is a variant of the popular SIMPLER algorithm of Patankar.2! A brief description of the two-
dimensional version of this method is provided here for completeness.

When the computational domain is discretized, the weak form of the Navier—Stokes equations
results in a set of linear algebraic equations

Ku-Cp-=f1, (14)
Kv-Cp=f1, (15)
Clu+Cyv=0, (16)

where K, and K, are the advection-diffusion matrices of equation (13b), C, and C, are the pressure
matrix terms and f, and f, are the forcing vectors. To solve this set, the segregated algorithm sets up a
linear algebraic equation for each degree of freedom. While each of the momentum equations provides
a matrix equation for each velocity degree of freedom, one needs a matrix equation for pressure. A
Poisson-type matrix equation is derived for this purpose at the discrete level by multiplym¥
momentum equations by the inverses of K, and K, respectively followed by multiplication by C;

CT respectively. The procedure resulting from this manipulation is referred to as the pressure
pmjecnon method and is discussed in detail by Haroutunian et al. 2

3.3. Kinematic update

In cases where the surface tension effects are small in comparison with the viscous forces
(i.e. Ca>> 1), the use of the kinematic constraint as the distinguished condition is the preferred
approach. In this update, the normal and tengential stress balance conditions are satisfied during the
flow solution. These equations enter the momentum equations through the boundary terms of equation
(13b).

The normal stress can be replaced by equation (12) and the tangential stress by equation (11) to give

J oI ds = J @x(=pon; — onn; ;)ds + J @0, ds. 17
I‘, I‘, rf
Note that in the above equation Iy is that part of the boundary where a free surface is present. The

curvature in the normal stress balance has been replaced by the surface gradient of the normal vector.
Using the surface divergence theorem'?

J (0¢y) ;ds = J apm;ds +J opnn; ;ds, (18)
r ar r
we can combine the equations to give

l o T ds_—j (p,‘pon,-ds—J a(p,,_ids+J o m;ds, (19)
Ty Ty

ar,
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Figure 1. Representation of free surface boundary

where m is the outward-pointing normal of the boundary aI'; of the free surface (see Figure 1). The
integral on ', is simply

J - opym; ds = opmly +apml, (20)
are

in two dimensions and dl'; is a line integral in a 3D geometry that ensures the satisfaction of contact
angles in a weak sense. These equations are simply the 3D extension of those provided by Ruschak.?
It should be noted that equation (19) also accounts for spatial gradients in surface tension.

To perform the update, we need to find the new location of the free surface where the kinematic
constraint is satisfied in a weighted residual sense. In a weighted sense the kinematic constraint is then

J Okulni ds = 0, (21)
Ty

where 6 is the weight function for free surface deformation. Since the integrand is a scalar product, we
choose to evaluate it in a local tangential-normal co-ordinate system. To be sure that we do not make
any assumptions about the shape of the free surface, we represent the surface in terms of the local
tangential co-ordinate directions. If (x, ) represent the local tangential directions and z represents the
normal direction, let us then assume the equation of the updated surface to be

z=g(x,y). (22)
The normal to this free surface will be
1
n=—————(—g.—g, 1) 23
V(T I @3)
If we represent the deformation g using the basis function 4, i.e.
g =908, (24)
and substitute this into the kinematic constraint, we get
[, b+ 8y = | . @5)
i f

In the above equation (u,, u,) are the local tangential velocities and u; is the normal velocity. Since the
constraint equation using equations (10) and (23) is a first-order partial differential equation, we use a
streamline-upwinded Petrov—Galerkin formulation. The weight function is chosen as

0=6+pu-V, (26)
where § = h/2{u|. The mesh length h is the element size computed in the streamwise direction on the
surface.

Notice that the predicted deformation is directly a function of the normal velocity at the current
iterate. In matrix form this equation is simply

Keg =1, @7
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where
Kf = J (Bkai. 1% + Bk(sivzuz)ds, f= J 0*“3 dS. (28)
Iy Ty

If there are any fixed contact lines, g is taken to be zero. The contact angle conditions are imposed as
part of the stress boundary conditions (equation (19)). Since the kinematic constraint equation is a
first-order partial differential equation, Dirichlet-type boundary conditions can be enforced at the
inflow only. This observation is also supported by the study of Renardy and Renardy.>

3.4. Normal stress update

In problems where the surface tension forces dominate the viscous forces (i.e. Ca < 1), the
distinguished condition is the normal stress balance. In this update the tangential stress balance and the
condition of no normal flow are imposed as part of the flow solution. As before, the integration of the
momentum equations generates on the boundary a tangential stress term

J otin; Tt ds = J @0 ds, (29)
ry ry
where the comma is the surface gradient operator. This term can be evaluated in the local co-ordinate
system as

dc do
Vsd=t1§l+t2?ax—2. (30)

The above stress is a consequence of non-uniform surface tension caused by temperature or surfactant
distribution on the interface. The other boundary condition of zero normal flow can be invoked in a
straightforward manner. However, as pointed out by Engelman et al.,** consistent normals should be
evaluated to ensure conservation of global mass fiow.

To determine the matrix equations for free surface deformation, we turn to the weighted residual
form of the normal stress balance, which can be stated as

J 5k(niT,~jnj +p0 - (sH)dS =0. (31)
Ty

If the free surface is represented as a function in the global co-ordinate system (e.g. y = f(¥', Z’), then
one can rewrite the curvature term using the surface divergence theorem as

J dyon, ;= —J n(od;) ;ds +J dyanm; ds. (32)
T ' r, ' ar,

Such a procedure is beneficial in that it lowers the order of the equations and an explicit calculation of
the curvature is not needed. However, a priori knowledge of the surface is necessary to utilize such a
procedure. Since the problems of interest do not always fall under this classification, we assume a local
representation of the surface as described in the kinematic update.

Specifically, we seek a deformation

s=gn (33)
in a direction normal to the current free surface iterate. The normal n’ to this new perturbed surface is'’

n=n—-nxVxs 34)



110 N. RAMANAN AND M. S. ENGELMAN

Using (33) and (34) and vector identities, it can be shown that the curvature of the new surface (H') can
be written in terms of the old curvature (H) as

H' =H+g;—gH -2K)+gg H (33)

where K, the Gaussian (or second) curvature, is the product of the principal curvatures of the surface.
Further, if we make the assumption that the deformations are small, equation (35) can be linearized to

H =H +g ;—g(H* - 2K). (36)

Substituting this into the normal stress balance, we have

[, ouothr +g.4 -t — 2605 = | 00 + mT mpes. G7)
Ty t
Using the Green—Gauss theorem,
| sioguas=] tiomg -] @b gias (38)
r ar, Iy
With equation (34) and the condition that at the boundaries of the new free surface iterate
m"":' = 0, (39)
it can be shown that
migi = m,'ni, (40)

which is simply a correction to the weighted residual equation when the contact angle boundary
conditions are not satisfied. Finally, the weighted residual equation is

- Ir, (05), g ds — L, adyg(t” - 26005 = - |

ar,

odymn; ds + I 0o + nTyn; — oH)ds. (41)
Te

It should be noted that the new deformation g is simply determined by the residual of the normal stress

balance and the non-satisfaction of contact angle boundary conditions.

The curvature at any point can be computed by passing a circle through two adjacent points. This
procedure has been adopted with success by Goodwin and Homsy.?* If the curvature does not change
rapidly, it can also be evaluated as the surface gradient of the normal vector. The normal at a node is
non-unique (for the discretized surface), since the nodes are common to more than one element. A
mean normal that best resembles the true normal to the continuous surface must be found. It can be
approximated as an average of normals evaluated at integration points close to the node in the various
elements. Since the elements are likely to have different surface areas too, it would be better to seek a
weighted average based on the surface areas of these normals; such a weighted normal is simply the
consistent normal in the terminology of Engelman et al?* Becausc these are evaluated for the
imposition of zero normal flow, it would be computationally advantageous to use them for curvature
calculations. As can be seen from the examples, such an approach provides for a satisfactory
computation of curvature. The consistent normal at the midpoint of a quadratic element can be shown
to be simply the geometric normal. Though such a value is satisfactory for the imposition of zero
normal flow, it can give erroneous results for curvature calculations. To alleviate this difficulty, we
approximate the midpoint consistent normal as an average of the normals of the other nodes that
belong to the element.
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We now proceed with the update procedure for normal stress iteration. If we let the free surface be
represented by

z=gxy), (42)

then one can invoke an equation for the deformation of the free surface as

|, 1€s080, + 020080 g s+ | asida? - 2k0g s
Ty Ty (43)
= J Ox(m;T;;n; + po)ds + J 6,0H ds — J Syon;m; ds.
re Ty ary

The first term on the right side of the equation is the normal stress on the free surface, the second term
is the integral of capillary pressure and the last term is the influence due to the imposition of contact
angle boundary conditions. The contact angle term is evaluated using the normal of the previous iterate
and the proper tangent vector as specified by the contact angle. It should be noted that though this
update is formulated for small deformations, no assumptions or linearizations have been made of the
curvature terms. Thus the normal stress update is quite suitable for even large deformations of the free
surface. However, since the curvature calculations are performed explicitly and low-order basis
functions are used, problems which possess sharp changes in the curvature of the free surface may be
difficult to model.

As part of the flow solution, pressure is computed only up to an additive constant. This pressure
level can be computed in one of two ways. If there is a volume constraint on the fluid, the additional
condition that the volume be conserved provides the estimate for the constant. The volume constraint
statement is simply

L‘ gids =0, (44)

Combining this with equation (43), we can obtain the constant to correct the pressure from the flow
solution. In problems of unbounded extent the asymptotic behaviour or far-field conditions provide the
means of determining the constant. For example, in static capillary problems the pressure on the free
surface in the farfield is known, since the curvature effects are negligible or known a priori. Using
such a condition, one can determine the constant to correct the pressure.

3.5. Mesh adjustment after free surface update

The free surface updates using both kinematic and normal stress conditions provide the deformation
in a direction normal to the current free surface. As a result, if one has access to an automatic mesh
generator, the mesh can be updated after a few or every free surface update(s). This is the preferred
way, since it allows for a smooth mesh to be generated after one or a few iteration(s). We have
implemented two different approaches to mesh adjustment. First we used a spine-based mesh
adjustment along the lines of Silliman and Scriven.® The mesh adjustment is performed by using the
spine directions specified by the user. Since the free surface deformations are predicted along the local
normal to the surface, as seen from Figure 2, the deformation is projected along the spine passing
through the free surface node and the free surface node is moved to that location along the spine. The
interior nodes on the spine are adjusted based on the relative grading of the original mesh. Such a
method preserves the integrity of the mesh. The chief drawback of this method is that in three-
dimensional problems or problems with moving contact lines on curved boundaries it is sometimes
extremely difficult to set up spines to follow the direction of the free surface. As a second approach we
remesh the regions adjacent to a moving free surface with an algebraic grid generator. We have found
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Figure 2. Free surface movement and preferred/spine directions

that the automatic mesh generator produces more efficient solutions, since the nodes are allowed to
move in a direction locally normal to the free surface. At the walls or boundaries where the free surface
have to move in a direction determined by the geometry, the component of the deformation along that
direction is used to move the surface. In the next section we present a few test problems that
demonstrate the capabilities of the free surface algorithm.

4. TEST PROBLEMS
4.1. 2D die swell

The die swell problem has essentially become the benchmark problem for testing external free
surface flow problems. We have solved this problem with both kinematic and normal stress updates
and compared our solutions (Tables I and II) with those of a Newton-based solver of FIDAP?® The
tables present the comparison on the basis of the die swell rate at various Reynolds numbers and
capillary numbers. The comparison shows excellent agreement with the solutions obtained with the
Newton-based method. Besides the swell rate, the shape of the free surface also compared very well.
The experimental results of Whipple and Hill?’ for this problem are for creeping flow at zero surface
tension. The die swell under such circumstances has been observed to be around 20%, whichis also in
agreement with our simulations. The convergence criterion was based on the relative change in
velocities, pressure and free surface deformation. Convergence is assumed to have been reached if all
these relative changes are less than 104, Typically 10-15 free surface updates are needed to reach this
convergence criterion. In accordance with the findings of Silliman and Scriven,® the convergence rates
are best when the kinematic update is used for Ca > 1 and the normal stress update for Ca « 1. In
addition, relaxation factors are necessary to converge to the solution. These values are also given in the
tables. It is also observed that a partially converged solution of fiow variables (i.e. velocity tolerance
less than 10~#) between updates converged faster to the final free surface shape in most instances.
When simulating creeping flows, such an approach can lead to a spurious solution of the free surface
profile with a bulge near the exit section. However, if the flow solution is converged to a tight tolerance
before performing free surface updates, such spurious solutions are always averted. Figures 3(a) and
3(b) show the typical convergence behaviour of the update schemes. The L2-norm of the free surface
deformation and the residual of the free surface distinguished condition are plotted as a function of the
updates. The figures show a linear convergence rate for the two update schemes.

The computer storage requirements for the solution of this problem are as follows. With the
computational domain discretized with 697 nodes, the Newton-based solver required 457,778 integer
words to store the stiffness matrix with minimum and maximum bandwidths of 64 and 111
respectively. The segregated solver needed 74,696 integer words and had minimum and maximum
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Table 1. Comparison of die swell (%) for kinematic update

Re Ca Relaxation Segregated Newton
factor (segr.)

10 0 0 7-51 7-58

10 10 06 7-67 7-68

10 1 08 7-98 7-98
1 oo 0 19-01 18-99
1 10 0-5 18:21 18-53
1 1 08 1392 13-85

Table 1. Comparison of die swell (%) for normal stress update

Re Ca Relaxation Segregated Newton
factor (segr.)

10 10-3 05 0-09 0-11

10 01 0-8 4.71 4.69

10 0-5 097 7-98 7-98
1 1073 05 0-08 0-04
1 0-1 0-8 3.41 3.51
1 05 09 10:51 10-77

bandwidths of 27 and 37 respectively. Since the memory requirements are quite low for such a two-
dimensional problem, the Newton-based solver was much quicker in terms of CPU time required to
solve the problem to the same accuracy. However, the advantage of such segregated solvers will only
be evident in large 2D or 3D problems.
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Figure 3(a). Convergence behaviour of kinematic update for Re = 10, Ca = oo. The norm of the free surface deformation
(surface) and normal velocity (norm) on the free surface are plotted as a function of free surface updates
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Figure 3(b). Convergence behaviour of normal stress update for Re = 10, Ca = 0-1. The norm of free surface deformation and
residual of normal stress balance on the free surface are plotted as a function of free surface updates

4.2. 3D die swell

The extrudate swell from a square die was chosen to show the applicability of the algorithm in three
dimensions. Only a quarter-section of the die and extrudate is modelled owing to symmetry. The initial
shape of the free surface assumed was simply a projection of the die as shown in Figure 4(a). The flow
field in this section was computed with a coupled solver using successive substitution with the free
surface treated as a stress-free boundary. The resulting velocity field was used as an initial flow field
for the free surface problem. At the corners of the die the normals are computed as consistent normals,
which for the initial free surface shape are simply along the diagonal of the square cross-section. The
free surface is moved in the direction of the consistent normal during every update. The consistent
normals are recomputed after the free surface has been updated. Using a relaxation factor of 0-5 for the
free surface, convergence was attained in less than 15 free surface updates.

Figure 4(a). Initial and final free surface shapes for extrusion through a square die; Re = 1, Ca = o0
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Figure 4(b). Final mesh for extrusion through a square die; Re = 1, Ca = oo
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Figure 4(c). Nommalized streamwise velocity (A) and pressure (B) along corners of die; Re = 1, Ca = oo

The swell rates computed along the symmetry sections and along the diagonal are compared with
those of Karagiannis ef al.'® in Table III. It is seen that the swell rates and the final free surface shapes
compare very well. The final mesh and extrudate shape are shown in Figure 4(b). We have also found
excellent agreement between the pressure and streamwise velocity distributions (shown in Figure 4(c))
along the comners of the die with those of Karagiannis ef al.'> This problem was discretized with 3159
nodes and converged in 1523 s on a Convex C-3340. The memory required to store the stiffness matrix
was about 1.1 x 10° integer words. Karagiannis et al.!> modelled the problem with 5859 nodes. Their
simulation took about 1150 s on a Cray X-MP 2/2. Their memory requirements were much higher than
ours (estimated to be about 24 x 10° integer words) for 16,500 unknowns with a front width of about
726. 1t should be noted that out algorithm achieved the same accuracy as theirs with a smaller number
of nodes, since we did not have the restriction of using spines.

4.2. Curtain coating

In this example we show the utility of the algorithm to solve problems with dynamic contact lines.
The curtain coater is a classic example of a dynamic contact line problem that has been studied in
detail by Kistler and Scriven.!! For this test case we choose Ca = 10, Re = 2-5 and set the substrate



116 N. RAMANAN AND M. S. ENGELMAN

Table I1I. Comparison of swell rates of extrusion through a square die

Re Ca Swell rate (%) segregated Swell rate (%) Karagiannis

1 o0 18-9 (centre), 3-1 (diag.) 18-4 (centre), 29 (diag.)
10 00 16-8 (centre), 0-8 (diag.) —

velocity and inflow velocity to be equal. In addition, we have imposed the dynamic contact angle at the
location where the left free surface contacts the free surface to be 160°. The Navier slip model is used
to describe the relationship between slip velocity and shear stress. The slip coefficient has been set to
0-01. Figure 5(ay shows the initial guess of the free surface shape. The free surface is allowed to move
in the direction of the local normal, except near the dynamic contact line where the movement is
specified to be only along the substrate. For reasons of numerical stability we performed the first 10
updates with a high relaxation factor of 0-95 for the free surface and then decreased it to 0-5 and
resumed the computations. To obtain a converged solution, close to SO free surface updates were
necessary. The final mesh and free surface shape shown in Figure 5(b) compare very well with the
solution reported by Kistler and Scriven.'' The location of the left free surface which contains the
dynamic contact point is compared with the numerical results of Kistler and Scriven'' in Figure 5(c)
and shows very good agreement.

4.4. 3D capillary rise on a cylinder

Static capillary problems can be solved with normal stress update for any value of surface tension.
The capillary rise on a circular cylinder was solved as a three-dimensional problem to demonstrate this
application (Figure 6). Huh and Scriven?® obtained analytical solutions to this problem. They show that
with the contact angle at 60° and the radius set to 0-2a, the capillary rise on the cylinder is 0-189aq,
where a is the capillary length. Our numerical solution indicates a rise of 0-190a on the cylinder. The
far boundary was set at a radius of 3a and was assumed to be flat and fixed. The measured contact
angle on the cylinder was 61°.

4.5. Thermocapillary convection in a liquid bridge

This problem is a model of the floating zone process used in crystal growth. The fluid of interest is
held between two circular plates maintained at a constant temperature of zero in non-dimensional units.
The axis of the liquid bridge that is formed between the two plates coincides with the direction of
gravitational acceleration. The fluid is assumed to be present in an environment where it is heated by
heat sources whose influence is simulated by a parabolic ambient temperature distribution with a
maximum temperature of one in the middle of the liquid bridge. The free surface of the liquid bridge is
the outer boundary of the cylinder. The problem is axisymmetric; however, to demonstrate the 3D
capabilities, we have solved the flow and free surface shape in a quarter-section of the cylinder.

The flow inside the fluid is driven by a combination of natural convection and thermocapillary
convection. The latter develops owing to the heating from the ambient, which sets up a temperature
distribution on the free surface and hence a spatial variation in surface tension. The gradients in surface
tension then induce a tangential stress on the free surface, causing the fluid to flow in the direction of
larger surface tension. The free surface shape is affected primarily by the body forces related to
gravitational effects and in small part to the viscous stresses of the fluid. The axisymmetric version of
this problem was solved by Zhang and Alexander”® for the following parameter set: Bi = 10,
Pr=4.667, Re =107, Ca= 1/70, Gr = 2-7 and G = 0-468. Here Bi is the Biot number, Pr is the
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Figure $(a). Initial and final free surface shapes of curtain coater; Re = 2-5, Ca =10, U/V =1
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Figure 5(b). Final mesh and free surface shape of curtain coater; Re =2-5, Ca =10, U/V =1

1.00000 4

0.80000 -~

y
(X10+ 1)

0.60000 <

0.40000 <

0.20000 o

0.00000 ]

T T T LS T 1
~1.00000 —-0.50000 0.00000 050000 1.00000 1.50000
x—coordinote
Figure 5(c). Comparison of left free surface with simulations of Kistler and Scriven'! (o) for Ca =10, Ca =3 (Re = 2.5,
uiv=1



118 N. RAMANAN AND M. S. ENGELMAN

2

-

Figure 6. Final mesh of static capillary rise on a cylinder; a = /5, contact angle is 60°

Figure 7(a). Velocity vectors of flow due to thermocapillary convection in a liquid bridge; Re = 107, Pr = 4-667, Ca = 1/70,
Bi=10,Gr=2.7,G = 0-468
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Figure 7(b). Isotherm contours of thermocapillary convection in a liquid bridge
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Prandt] number, Re is the Reynolds number, Ca is the capillary number, Gr is the Grashof number and
G is the dimensionless gravitational acceleration.

Our numerical solution for the above parameter set is shown in Figures 7(a) and 7(b). The flow
structure in Figure 7(a) can be explained as follows. The temperatures are hottest near the centre of the
free surface and coldest at the location where the free surface meets the discs. As a result, the surface
tension is higher near the discs than at the centre. This differential surface tension induces tangential
stresses which cause the fluid to flow from the centre of the free surface towards the cold discs. The
presence of natural convection weakens the top cell and strengthens the bottom cell, causing differing
strengths of circulation for the two cells. Because the Prandtl number of the fluid is moderately large,
the convection causes the isotherms to bend with the flow, resulting in the temperature distribution
shown in Figure 7(b). It is also seen that the convection results in higher temperature gradients near the
discs. Since the gravitational acceleration acts along the axis, the free surface bulges at the bottom and
shrinks at the top, because the pressures are higher at the bottom. The flow structure and isotherm
distribution compare qualitatively with the results reported by Zhang and Alexander.’® The only
quantitative information that can be used for comparison is the maximum temperature in the crystal
melt, which according to our simulations is 0-747, very close to the value of 0-737 obtained by Zhang
and Alexander.?®

5. CONCLUSIONS

An algorithm for the simulation of 3D viscous free surface flows has been presented. The algorithm
performs fixed point iteration to execute alternately flow and free surface updates until convergence is
achieved. Two updates, namely kinematic and normal stress iterations are formulated to address the
extremes of large and small capillary numbers. It is observed that the contact angle boundary
conditions and influence of surface tension gradients can be handled quite naturally through a
conventional Galerkin finite element method. The free surface is represented using a local co-ordinate
system, with the result that general surface shapes can be addressed. The algorithm predicts
deformations in a direction locally normal to the previous iterate’s shape and can work quite naturally
with an automatic mesh generator. When the normal stress balance is uncoupled from the flow
solution, the pressures can only be solved with respect to an arbitrary pressure constant. This pressure
level can be identified either through a volume constraint or from a far-field condition. Examples of
extrudate swell in 2D and 3D, curtain coating, capillary rise on a cylinder and thermocapillary
convection in a liquid bridge have been provided to show applicability. Currently, in the next phase of
this study, we are extending this algorithm to the simulation of transient flows.
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