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SUMMARY 

An algorithm to simulate steady, viscous free surface flows is presented in this paper. A Picard-type approach 
wherein the flow and free surface updates are performed alternately is utilized to iterate for a solution. The 
procedurr is intended for large-scale two- or three-dimensional problems. A surface-intinsic coordinate system 
which facilities representation of gencral ike  surface shapes is used. Using a Galerkin finite element method 
(GFEM), two free surface updates, namely kinematic and n o d  stress updates arc formulated. It is shown that the 
effects of surface tension, surface tension gradients and imposition of contact angles can be simulated elegantly 
within the h e w o r k  of the GFEM. A novel feature of the updates is that the d e f o d o n s  arc sought in a 
direction n o d  to the cumnt itaate free surface shape, with the d t  that the method is ideally suited when 
used in conjunction with an automatic mcsh generator. With the normal stress updatc a volume constraint can also 
be imposed. A -&xi method is utilized to solve iteratively one degree of freoQom at a time for the solution of 
the flow variabks. As a resulf the memory and disc space requirCments are minimal. Sample problems in 
extrusion, coating and crystal growth are presented to clearly illustrate the convergence behaviour and accuracy of 
thc algorithm. 
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1. INTRODUCTION 

An interfacial region of molecular proportions is present between two immiscible fluids, the extent of 
which provides for a smooth change in physical properties. From a continuum viewpoint the tangible 
influence of this interface is an interfacial tension, a consequence of molecular forces of attraction. It is 
this force that accounts for the pressure difference across drops and bubbles. Engineering problems 
which possess interhces of immiscible fluids are wide and varied. Common examples that are of 
current interest include extrudate swell, crystal growth from melts, coating flows, electrolybc cells, etc. 
The ability to predict the interface shapes in conjunction with fluid flow and heat flow in the bulk fluids 
is of utmost importance in these and other engineering problems. For a continuum treatment of viscous 
fluid flow the existence of such an interface poses additional complexities through non-linear boundary 
conditions that need to be satisfied thereon. Such non-linearity is further accentuated in situations 
where non-uniform temperahuc, species or electric field effect spatial gradients in the interfacial 
tension an present. It is for this mason that these problems are intractable to analytical techniques 
except under excessively simplifyins assumptions and have been p m e d  as an active area of research 
in the realm of computational fluid dynamics. 

In the following sections an algorithm to simulate steady, viscous external flows is presented. For 
compactness and clarity we devote our attention to cases where the interha demarcates the fluid of 
interest and a tenuous vapour. In addition, we shall ~ssume that the fluid is viscous and incompressible. 
The special case of fne boundary problems of inviscid fluids has &ed considerable attention in the 
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literature. The subject of viscous free surface flows, which has received much less scrutiny, is the focus 
of our attention. 

The numerical solution of viscous free surface problems was pioneered by the studies of Nickell er 
al.’ and Harlow and Welch.’ The two studies approached the problem through different representations 
of the free surface and solution methods. Nickell er 01.’ assumed the free surface to be piecewise 
continuous, whereas Harlow and Welch’ represented the surface as a collection of piecewise 
discontinuous segments (a staircase type). The former is ideally suited to a boundary element or finite 
element discretization of the equations and researchers of free surface algorithms in those areas 
continued their efforts based on Nickell et al.’s’ approach. Harlow and Welch’s’ approach, on the other 
hand, lends itself suitabty to a finitedifference- or control-volume-based discretization of the equations 
and the research c o m ~ n i t y ~ - ~  in those areas progressed along these lines. 

In the finite element area, the study of Nickell er al.’ is noteworthy in that it was the earliest 
application of the finite element method to the solution of free surface flows. By first assuming a free 
surface shape., they solved for the flow solution subject to the satisfaction of normal and tangential 
stress conditions. Then they determined the free surface deformation necessary to satisfy h e  other 
boundary condition of no normal flow. They repeated in succession the solution of flow variables and 
free surface updates until a converged solution was attained for both the free surface shape and the flow 
field. Although their study was performed for a fluid with vanishing surface tension, from an 
algorithmic viewpoint it proved the feasibility of a Picard-type approach to the solution of fke surface 
flows. In addition, although Nickell et al.’ used the kinematic constraint as the boundary condition to 
update the free surface, if the fluid has a finite surface tension, one of the stress boundary conditions 
can be used to do so. Silliman and Scriven6 comprehensively addressed the issue of proper choice of 
boundary conditions to perform free surface updates. Working with two-dimensional geometries, they 
provided two free surface updates, namely kinematic and normal stress iterations. They claimed that 
the former is suitable for small or vanishing surface tension, while the latter should be prefmed for 
large or finite surface tension problems. The key feature of their algorithms is the ability to repment 
the free surface as a height function. Other studies that relied on the height function approach include 
those by Fredericksen and Watts’ and Keunings.8 Orr et ~ 1 . ~  addressed many meniscus problems m 3D 
by representing the free surface height as a function of the horizontal co-ordinates. 

The Picard approaches of Nickell er al.’ and Silliman and Strived possess only a linear rate of 
convergence. To obtain quadratic convergence rates, Saito and Scriven’o proposed a Newton-based 
algorithm using splines that also overcame some of the limitations of the height function representation 
of Silliman and Scriven6 The Newton-based approach was adopted for 2D problems by many others, 
including Kistler and Scriven,’’ Kheshgi and Scriven,” Coyle et al.I3 and Engelman and Sani.14 
-annis et al.” extended the same method to three-dimensional problems and have r e p o d  
solutions for extrudate swell of fluid flow out of square, rectangular and other non-trivial shapes of 
dies. Their analysis ignores the effects of surface tension. The alternative to the Newton method of 
Saito and Scriven” is the total linearization method of Cuvelier and Schulkes,I6 who also solved a 
coupled set of equations along with the free surface shapes. Ho and Patera” provide yet another 
alternative to the height fimction method. They developed a transient algorithm based on a local 
surface cosrdinate system suitable for periodic or closed surfaces. The arbitrary Lagiangian-Eulerian 
(ALE) method of Ramaswamy and offers another approach to the solution of viscous free 
surface flows. 

It is evident that an algorithm that handles general fke surface shapes with the ability to handle 
contact angle conditions is highly desirable for the simulation of viscous free surface problems. While 
the Newton method proposed by Saito and Scriven” performs quite satisfactorily in two-dimensional 
geometries, an extension of the same to three dimensions will be memory- and CPU-time-intensive, as 
illustrated by the work of Kamgiannis er a1.” We believe that a Picard-type iteration in combination 
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with a segregated solution approach will substantially d u c e  the demand on computational resources. 
With this in mind we present one such algorithm that requhs just d continuity of the surface, 
includes effects of interfacial tension and imposes contact angle conditions naturally in the weak form. 

2. GOVERNING EQUATIONS 

For an elegant exposition of the algorithm we will restrict our attention to the steady, incompressible 
flow of a Newtonian fluid. The interface is assumed to exist in the presence of a vapour of vanishing 
viscosity. The Navier-Stokes equations under such assumptions are 

u . . = o  1.1 (1) 

In these equations u is the velocity, T is the total stress and f is the body force. The fluid density is 
represented by p. 

The total stress tensor T comprises the pressure p and the deviatoric stress 7:  

A constitutive equation is necessary to define the relationship between stress and strain. This can be 
written for a Newtonian fluid as 

The governing equations (1) and (2) are subject to the boundary conditions 

ui = ii on ru, (3) 

njTij = ?;. on T r ,  (4) 

where r,, and r, signify the boundaries on which Dirichlet conditions on velocity and stress are 
applied. In addition to the above boundary conditions, the following conditions must be satisfied at the 
fluid-vapour interface rf: 

upi  = 0, ( 5 )  

where n is the outward-pointing n o d  and t is a tangential direction on the fire surface. In the above 
equations po is the ambient pnssure, u is the surface tension and H is the total curvahm of the fluid- 
vapour interface. Since the flow is assumed steady, the kinematic constraint is simply a statement of no 
n o d  flow. Spatial gradients in surface tension, as seen fiom equation (6), can induce tengential 
stresses on the bulk h i d .  Such gradients can be the cause of non-uniform temperatun or surfactant 
distribution. The comma (= V,) operator here is the surface gradient At the intmfwe the 
difference in normal stress between fluid and vapour is compensated by the forces of interfacial 
tension. 

If the flow is assumed to be slow, the equations can be made dimensionless by characteristic scales 
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of L, U and pU/L .  The Navier-Stokes equations can then be cast in a non-dimensional form as 

where Re = pUL./p, Ca = pU/ao and Bo = pgL2/ao, subject to Dirichlet conditions on velocity and 
stress. The surface tension a, is the reference value. In the momentum equation the body force is 
assumed to be only due to gravitational attraction that acts in the dirtction specified by the unit vector 
e. On the h e  surface the interfacial boundary conditions dictate 

uini = 0, (10) 

In the above equations, three dimensionless groups appear. Re is the Reynolds number, the ratio of 
inertial and viscous forces. The capillary number Ca measures the relative importance of viscous and 
surface tension forces. The ratio of gravity forces to interfacial tension is the Bond number Bo. The 
ratio of Bond and capillary numbers is often referred to as the Stokes number. We now turn to the weak 
form of these equations to describe how the free surface boundary conditions come into play. 

3. GALERKIN FlNITEi ELEMENT METHOD 
3.1. WeaR formulation of governing equations 

Using the Galerkin finite element method and the Green-Ciauss theorem, the weak form of equation 
(2) can be written as 

(13b) 
where JI is the basis function for pressure and (P is the basis function for velocities in the computational 
domain V. The traction terms can be applied to rl where the stresses are prescribed, while on rr the 
free surface boundary conditions of equations (1 1) and (12) are applied. 

The weak form of the equations can be solved either in a coupled or in an uncoupled fashion. Saito 
and Scriven" solve the set of equations using a Newton method which allows for simultanmus 
evaluation of flow field and fiee surface position. Such a method is quadratic in convergence rates but 
memory- and CPU-intensive, as discussed previously. For this reason we opt to use a fixed point 
iteration wherein the flow solution and fiee surface update are performed successively in an iterative 
fashion. When the flow solution is to be obtained on a free surface iterate, only two of the three 
equations (10)-(12) can be satisfied on the surface. As observed by Silliman and Scrivq6 the choice 
of the distinguished boundary condition is contingent upon the capillary number. At low capillaxy 
numbers the normal stress balance is the proper condition to update the free surface. In high or infinite 
capillary number situations the kinematic constraint is the distinguished condition that should be used 
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to update the shape. In the following subsections we provide a description of these two updates 
performed on general t k e  surface shapes. We will, however, first provide details of how we obtain the 
flow solution for a given free surface iterate. 

3.2. The segregated method 

For the solution of the flow field we used the segregated algorithm of Haroutunian el ul.” This 
algorithm is a variant of the popular SIMPLER algorithm of Patankar.” A brief description of the two- 
dimensional version of this method is provided here for completeness. 
When the computational domain is discretized, the weak form of the Navier-Stokes equations 

results in a set of linear algebraic equations 

K,,u - Cxp = f,, (14) 

c,’. + CyTV = 0, (16) 

where K,, and K, are the a d v e c t i o d f i i o n  matrices of equation (1 3b), C, and C, are the pnssure 
matrix terms and f, and fy are the forcing vectors. To solve this set, the segregated algorithm sets up a 
linear algebraic equation for each degree of freedom. While each of the momentum equations provides 
a matrix equation for each velocity degree of freedom, one needs a matrix equation for pressure. A 
Poisson-type matrix equation is derived for this purpose at the discrete level by multiplyin the 
momentum equations by the inverses of K,, and K,, respectively followed by multiplication by C, and 
C; respectively. The procedure resulting from this manipulation is referred to as the pressure 
projection method and is discussed in detail by Haroutunian et uL2’ 

! 

3.3. Kinematic update 

In cases where the surface tension effects are small in comparison with the viscous forces 
(i.e. Cu >> l), the use of the kinematic constraint as the distinguished condition is the p r e f d  
approach. In this update, the normal and tengential stress balance conditions are satisfied during the 
flow solution. These equations enter the momentum equations through the boundary terms of equation 
(13b). 

The normal stress can be replaced by equation (12) and the tangential stress by equation (1 1) to give 

Note that in the above equation rr is that part of the boundary where a free surface is present. The 
curvature in the normal stress balance has been replaced by the surface w e n t  of the normal vector. 
Using the surface divergence theorem” 

we can combine the equations to give 
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Figure 1. Representation of fnx surface boundary 

where m is the outward-pointing normal of the boundary arr of the free d a c e  (see Figure 1). The 
integral on ar, is simply 

r 

in two dimensions and arr is a line integral in a 3D geometry that ensures the satisfaction of contact 
angles in a weak sense. These equations are simply the 3D extension of those provided by Rus~hak.~~ 
It should be noted that equation (19) also accounts for spatial gmbents in s& tension. 
To perform the update, we need to find the new location of the free surface where the kinematic 

constraint is satisfied in a weighted residual sense. In a weighted sense the kinematic constraint is then 

I,, ekuini ds = 0, (21) 

where 8 is the weight function for flee surface deformation. Since the integrand is a scalar product, we 
choose to evaluate it in a local tangential-normal coordinate system. To be sure that we do not make 
any assumptions about the shape of the free surface, we represent the surfice in terms of the local 
tangential co-ordinate directions. If (x,y) represent the local tangential directions and z represents the 
normal direction, let us then assume the equation of the updated surface to be 

The n o d  to this free surface will be 
z = g(x, y). (22) 

If we represent the deformation g using the basis function 6, i.e. 

g = dig,, 
and substitute this into the kinematic constmint, we get 

In the above equation (q, u2) are the local tangential velocities and u3 is the normal velocity. Since the 
constraint equation using equations (10) and (23) is a first-order partial differential equation, we use a 
streamline-upwinded Petrov4alerkin formulation. The weight function is chosen as 

e = 6 +flu v, (26) 
where /I = h/21ul. The mesh length h is the element size computed in the streamwise direction on the 
surface. 

Notice that the predicted deformation is directly a function of the normal velocity at the current 
iterate. In matrix form this equation is simply 

Kfg = f ,  (27) 
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where 
r r 

If there are any fixed contact lines, g is taken to be zero. The contact angle conditions are imposed as 
part of the stress boundary conditions (equation (19)). Since the kinematic constraint equation is a 
fint-order partial differential equation, Dirichlet-type boundary conditions can be enforced at the 
inflow only. This observation is also supported by the study of Renardy and re nard^.'^ 

3.4. Normal stress update 

In problems where the surface tension forces dominate the viscous forces (1.e. Ca << l), the 
distinguished condition is the normal stress balance. In this update the tangential stress balance and the 
condition of no normal flow are imposed as part of the flow solution. As before, the integration of the 
momentum equations generates on the boundary a tangential stress term 

1 qktlniTij5 = 1 qka, / h, (29) 
r r  r r  

where the comma is the surface gradient operator. This term can be evaluated in the local co-ordinate 
system as 

a o a a  v,a = t, - + t2 - . 
ifx2 

The above stress is a consequence of non-uniform surface tension caused by temperature or surfactant 
distribution on the interface. The other boundary condition of zero normal flow can be invoked in a 
straightforward manner. However, as pointed out by Engelman et a1.,24 consistent normals should be 
evaluated to ensure conservation of global mass flow. 

To determine the matrix equations for free surface deformation, we turn to the weighted residual 
form of the normal stress balance, which can be stated as 

6k(niTijnj + p o  - 6H)ds  = 0. (31) 1,. 
If the free surface is represented as a function in the global co-ordinate system (e.g. / =f(x’ ,  z’), then 
one can rewrite the curvature term using the surface divergence theorem as 

Such a procedure is beneficial in that it lowers the order of the equations and an explicit calculation of 
the curvature is not needed. However, Q priori knowledge of the surface is necessary to utilize such a 
procedure. Since the problems of interest do not always fall under this classification, we assume a local 
representation of the surface as described in the kinematic update. 

Specifically, we seek a deformation 

s = gn (33) 

n ’ = n - n  x V x  s. (34) 

in a direction normal to the current free surface iterate. The normal n’ to this new perturbed surface isI9 
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Using (33) and (34) and vector identities, it can be shown that the curvature of the new surf= (H') can 
be written in terms of the old curvature (H) as 

H' = H +g," - g ( H 2  - 2K) + a * i H , i ,  (35) 

where K, the Gaussian (or second) curvature, is the product of the principal curvatures of the surkc. 
Further, if we make the assumption that the deformations are small, equation (35) can be linearized to 

H ' = H + g . , . - g ( H 2 - 2 K ) .  (36) 

Substituting this into the normal stress balance, we have 

Using the Green-Gauss theorem, 

With equation (34) and the condition that at the boundaries of the new free surface iterate 

mini = 0, (39) 

m g i  = mini, (40) 

it can be shown that 

which is simply a correction to the weighted residual equation when the contact angle boundary 
conditions are not satisfied. Finally, the weighted residual equation is 

It should be noted that the new deformation g is simply determined by the residual of the normal stress 
balance and the non-satisfaction of contact angle boundary conditions. 

The curvature at any point can be computed by passing a circle through two adjacent points. This 
procedure has been adopted with success by Goodwin and Homsy.'' If the curvature does not change 
rapidly, it can also be evaluated as the surface gradient of the normal vector. The normal at a node is 
non-unique (for the discretized surface), since the nodes are common to more than one element. A 
mean normal that best resembles the true normal to the continuous surface must be found. It can be 
approximated as an average of normals evaluated at integration points close to the node in the various 
elements. Since the elements are likely to have different surface ateas too, it would be better to seek a 
weighted average based on the surface areas of these normals; such a weighted n o d  is simply the 
consistent n o d  in the terminology of Engelman et ~ 1 . 2 ~  B ~ W  these are evaluated for the 
imposition of zero normal flow, it would be computationally advantageous to use them for curvature 
calculations. As can be seen from the examples, such an approach provides for a satisfactory 
computation of curvabm. The consistent normal at the midpoint of a quadratic element can be shown 
to be simply the geometric normal. Though such a value is satisfactory for the imposition of zero 
normal flow, it can give erroneous results for curvature calculations. To alleviate this difficulty, we 
approximate the midpoint consistent n o d  as an average of the normals of the other nodes that 
belong to the element. 
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We now proceed with the update procedure for normal stress iteration. If wc let the free surface be 
 resented by 

= g(x, y ) ,  (42) 
then one can invoke an equation for the deformation of the free surface as 

The first tenn on the right side of the equation is the normal stress on the free surface, the second tenn 
is the integral of capillary pressure and the last term is the influence due to the imposition of contact 
angle b o u n d a ~ ~  conditions. The contact angle term is evaluated using the normal of the previous iterate 
and the proper tangent vector as specified by the contact angle. It should be noted that though this 
update is formulated for small deformations, no assumptions or linearizations have been made of the 
mature. terms. Thus the normal stress update is quite suitable for even large deformations of the free 
surface. However, since the curvature. calculations are performed explicitly and low-order basis 
functions are used, problems which possess sharp changes in the curyafure of the free surface may be 
difficult to model. 
As part of the flow solution, pressure is computed only up to an additive constant. This pressure 

level can be computed in one of two ways. If there is a volume constraint on the fluid, the additional 
condition that the volume be conserved provides the estimate for the constant. The volume constraint 
statement is simply 

Combining this with equation (43), we can obtain the constant to coned the pressure from the flow 
solution. In problems of unbounded extent the asymptotic behaviour or far-field conditions provide the 
means of determining the constant. For example, in static capillary problems the pressure on the free 
surface in the farfield is known, since the curvature effects are negligible or known a priori. Using 
such a condition, one can determine the constant to correct the pressure. 

3.5. Mesh adjustment afierjhe surface update 

The free surface updates using both kinematic and normal stress conditions provide the deformation 
in a direction normal to the current free surface. As a result, if one has access to an automatic mesh 
generator, the mesh can be updated after a few or every free surface update@). This is the prtferred 
way, since it allows for a smooth mesh to be generated after one or a few itrration(s). We have 
implemented two different approaches to mesh adjustment. First we used a spine-based mesh 
adjustment along the lines of Silliman and Scriven.6 The mesh adjustment is performed by using the 
spine directions specified by the user. Since the fi.ee surface deformations are p~dict td  along the local 
normal to the surface, as seen fiom Figure 2, the deformation is projected along the spine passing 
through the fke surface node and the free surface node is moved to that location along the spine. The 
interior nodes on the spine are adjusted based on the relative gradmg of the original mesh. Such a 
method preserves the integrity of the mesh. The chief drawback of this method is that in three- 
dimensional problems or problems with moving contact lines on curved boundaries it is sometimes 
extnmely difficult to set up spines to follow the direction of the fke surface. As a second approach we 
remesh the regions adjacent to a moving free surface with an algebraic grid generator. We have found 
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Figure 2. F m  surface movement and prcfemdlspine dirtctions 

that the automatic mesh generator produces more efficient solutions, since the nodes are allowed to 
move in a direction locally normal to the fk surface. At the walls or boundaries whm the free surface 
have to move in a direction determined by the geometry, the component of the deformation along that 
direction is used to move the surface. In the next section we present a few test problems that 
demonstrate the capabilities of the fk surf= algorithm. 

4. TEST PROBLEMS 

4.1. 2D die swell 

The die swell problem has essentially become the benchmark problem for testing external h e  
surface flow problems. We have solved this problem with both kinematic and n o d  stress updates 
and compared our solutions (Tables I and 11) with those of a Newton-based solver of FIDAP? The 
tables present the comparison on the basis of the die swell rate at various Reynolds numbers and 
capillary numbers. The comparison shows excellent agreement with the solutions obtained with the 
Newton-based method. Besides the swell rate, the shape of the free surface also compared very well. 
The experimental results of Whipple and Hill” for this problem are for creeping flow at zeta surface 
tension. The die swell under such circumstanceS has been observed to be around 20%, whichtis also in 
agreement with our simulations. The convergence criterion was based on the relative change in 
velocities, pressure and free slnface deformation. Convergence is assumed to have been reached if all 
these relative changes are less than ’Qpically 10-15 free surface updates are needed to reach this 
convergence criterion. In accordance with the findings of Silliman and Striven: the convergence rates 
are best when the kinematic update is used for Ca >> 1 and the normal stress update for Ca << 1. In 
addition, relaxation factors are necessary to converge to the solution. These values are also given in the 
tables. It is also observed that a partially converged solution of flow variables (i.e. velocity tolerance 
less than lo4) between updates converged faster to the final free surface shape in most instances. 
When simulating creeping flows, such an approach can lead to a spurious solution of the free surface 
profile with a bulge near the exit section. However, if the flow solution is converged to a tight tolerance 
before performing free surface updates, such spurious solutions are always averted. Figures 3(a) and 
3(b) show the typical convergence behaviour of the update schemes. The L2-norm of the free surface 
deformation and the residual of the free surface distinguished condition are plotted as a h a i o n  of the 
updates. The figures show a linear convergence rate for the two update schemes. 

The computer storage requirements for the solution of this problem are as follows. With the 
computational domain discretized with 697 nodes, the Newton-based solver required 457,778 integer 
words to store the stifiess matrix with minimum and maximum bandwidths of 64 and 111 
respectively. The segregated solver needed 74,696 integer words and had minimum and maximum 
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Table 1. Comparison of die swell (?h) for kinematic update 

Re Ca Relaxation Segregated Newton 
factor (segr.) 

10 m 0 7.5 1 7.58 
10 10 0.6 7.67 7.68 
10 1 0.8 7.98 7.98 
I m  0 19.01 18.99 
1 10 0.5 18.21 1843 
1 I 0.8 13.92 13.85 

Table n. Comparison of die swell (%) for n o d  stress update 

10 10-3 0.5 0.09 0.1 1 
10 0.1 0.8 4.71 4.69 
10 0.5 0.97 7.98 7.98 

1 10-3 0.5 0.08 0.04 
1 0.1 0.8 3.41 3.51 
1 0.5 0.9 10.51 10.77 

bandwidths of 27 and 37 respectively. Since the memory requirements are quite low for such a two- 
dimensional problem, the Newton-based solver was much quicker in tenns of CPU time required to 
solve the problem to the same accuracy. However, the advantage of such segregated solvers will only 
be evident in large 2D or 3D problems. 

"'1 

"'1 
w'4 , . , . , . , . , . 

0 2 4 6 I 

N u m b a o f ~ u p d * a  
D 

Figure 3(a). Gmv- bchavhu oflcimMtic update fmRe = 10, GI = m. Thc oam oftbe free surface d c f ~ o a  
(mike) and normal vclocity (norm) on the free surface .TC plottai as a fuaction of free surface updates 
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NumbaofdaIrpd*ss  

F@ 3(b). Convergence behaviour ofnormal dress update for Re = 10, C a  = 0.1. Tbc norm ofkc  surface deformstion and 
residual of n o d  stnss balance on the free surface arc plotted as a function of free Bllrface updates 

4.2. 3 0  die swell 

The extrudate swell fiom a square die was chosen to show the applicability of the algorithm in three 
dimensions. Only a quarter-section of the die and extrudate is modelled owing to symmetry. The initial 
shape of the free surface assumed was simply a projection of the die as shown in Figure 4(a). The flow 
field in this section was computed with a coupled solver using successive substitution with the tite 
surface treated as a stress-free boundary. The resulting velocity field was used as an initial flow field 
for the free surface problem. At the comers of the die the normals are computed as consistent normals, 
which for the initial free surface shape are simply along the diagonal of the square cross-section. The 
fire surface is moved in the direction of the consistent normal during every update. The consistent 
normals are recomputed after the free surface has been updated. Using a relaxation factor of 0.5 for the 
free surface, convergence was attained in less than 15 free surface updates. 

Figure qa). Initial and Anal fra surface shapes for extrusion through a square die; Re = 1, Cu = oo 
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Figure 4@). Final mesh for extrusion through a square die; Re = 1, Ca = 00 
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Figure qc).  Normalized streamwise velocity (A) and pressure (B) along corners of die; Re = 1, Crr = w 

The swell rates computed along the symmetry sections and along the diagonal are compared with 
those of Karagiannis et ~ 1 . ' ~  in Table 111. It is seen that the swell rates and the final free surface shapes 
compare very well. The final mesh and extrudate shape are shown in Figure 4(b). We have also found 
excellent agreement between the pressure and streamwise velocity distributions (shown in Figure 4(c)) 
along the comers of the die with those of Karagiannis et ~ 1 . ' ~  This problem was discretized with 3159 
nodes and converged in 1523 s on a Convex (2-3340. The memory required to store the stiffness matrix 
was about 1.1 x lo6 integer words. Karagiannis et a/." modelled the problem with 5859 nodes. Their 
simulation took about 1150 s on a Cray X-MP 2/2. Their memory requirements were much higher than 
ours (estimated to be about 24 x lo6 integer words) for 16,500 unknowns with a fiont width of about 
726. It should be noted that out algorithm achieved the same accuracy as theirs with a smaller number 
of nodes, since we did not have the restriction of using spines. 

4.2. Curtain coating 

In this example we show the utility of the algorithm to solve problems with dynamic contact lines. 
The curtain coater is a classic example of a dynamic contact line problem that has been studied in 
detail by Kistler and Striven." For this test case we choose Ca = 10, Re = 2.5 and set the substrate 
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Table In. Comparison of swell rates of extrusion through a square die 

Re Cu Swell rate (%) segregated Swell rate (%) Karagiannis 

1 00 18.9 (centre), 3.1 (diag.) 18.4 (centre), 2.9 (diag.) 
10 00 16.8 (centre), 0.8 (diag.) - 

velocity and inflow velocity to be equal. In addition, we have imposed the dynamic contact angle at the 
location where the left free surface contacts the free surface to be 160". The Navier slip model is used 
to describe the relationship between slip velocity and shear stress. The slip coefficient has been set to 
0.01. Figure 5(aj shows the initial guess of the free surface shape. The free surface is allowed to move 
in the direction of the local normal, except near the dynamic contact line where the movement is 
specified to be only along the substrate. For reasons of numerical stability we performed the first 10 
updates with a high relaxation factor of 0.95 for the free surface and then decreased it to 0.5 and 
resumed the computations. To obtain a converged solution, close to 50 free surface updates were 
necessary. The final mesh and free surface shape shown in Figure 5(b)  compare vexy well with the 
solution reported by Kistler and Scriven." The location of the left free surface which contains the 
dynamic contact point is compared with the numerical results of Kistler and %riven" in Figure 5(c) 
and shows very good agreement. 

4.4. 3 0  capillary rise on a cylinder 

Static capillary problems can be solved with normal stress update for any value of surface tension. 
The capillary rise on a circular cylinder was solved as a three-dimensional problem to demonstrate this 
application (Figure 6). Huh and Scriven2' obtained analytical solutions to this problem. They show that 
with the contact angle at 60" and the radius set to O - h ,  the capillary rise on the cylinder is 0.189a, 
where a is the capillary length. Our numerical solution indicates a rise of 0 .190~ on the cylinder. The 
far boundary was set at a radius of 3a and was assumed to be flat and fixed. The measured contact 
angle on the cylinder was 6 1 O . 

4.5. Thermocapillary convection in a liquid bridge 

This problem is a model of the floating zone process used in crystal growth. The fluid of interest is 
held between two circular plates maintained at a constant temperature of zero in nondimensional units. 
The axis of the liquid bridge that is formed between the two plates coincides with the direction of 
gravitational acceleration. The fluid is assumed to be present in an environment where it is heated by 
heat sources whose influence is simulated by a parabolic ambient temperature distribution with a 
maximum temperature of one in the middle of the liquid bridge. The free surface of the liquid bridge is 
the outer boundary of the cylinder. The problem is axisymmetric; however, to demonstrate the 3D 
capabilities, we have solved the flow and fiee surface shape in a quarter-section of the cylinder. 

The flow inside the fluid is driven by a combination of natural convection and thermocapillary 
convection. The latter develops owing to the heating from the ambient, which sets up a temperature 
distribution on the free surface and hence a spatial variation in surface tension. The gradients in surface 
tension then induce a tangential stress on the free surface, causing the fluid to flow in the direction of 
larger surface tension. The free surface shape is affected primarily by the body forces related to 
gravitational effects and in small part to the viscous stresses of the fluid. The axisymmetric version of 
this problem was solved by Zhang and Ale~ande?~ for the following parameter set: Bi = 10, 
Pr = 4.667, Re = 107, Cu = 1/70, Gr = 2.7 and G = 0.468. Here Bi is the Biot number, Pr is the 
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Figure Initial and final fm surface shapes of curtain COW; Re = 2.5,  Ca = 10, U/V = 1 

Figurc 5@). Final mesh 
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Figurc Yc). Compiscm of Mt fice surfacx with simulatiaua of Kistla and Suiven" (0)  for Ca = 10. Ca = 3 (Re = 2.5 .  
u p  = I )  
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$- 
Figure 6. Final mesh of static capillary rise on a cylinder, u = JS,  contact angle is 60" 

Figure 7(a). Velocity vectors of flow due to thennocapillary convection in a liquid bridge; Re = 107, Pr = 4.667, Cu = 1/70, 
Bi = 10, Gr = 2.7, G = 0.468 

Figure 7@). Isotherm contom of thennocapillary convection in a liquid bridge 



SIMULATION OF STEADY FREE SURFACE FLOWS 1 I9 

Prandtl number, Re is the Reynolds number, Ca is the capillary number, Gr is the Grashof number and 
G is the dimensionless gravitational acceleration. 

Our numerical solution for the above parameter set is shown in Figures 7(a) and 7@). The flow 
structure in Figure 7(a) can be explained as follows. The temperatures are hottest near the centre of the 
free surface and coldest at the location where the fiee surface meets the discs. As a result, the surface 
tension is higher near the discs than at the centre. This differential surface tension induces tangential 
stresses which cause the fluid to flow fiom the centre of the free surface towards the cold discs. The 
presence of natural convection weakens the top cell and strengthens the bottom cell, causing differing 
strengths of circulation for the two cells. Because the Prandtl number of the fluid is moderately large, 
the convection causes the isotherms to bend with the flow, resulting in the temperature distribution 
shown in Figure 7@). It is also seen that the convection results in higher temperature gradients near the 
discs. Since the gravitational acceleration acts along the axis, the free surface bulges at the bottom and 
shrinks at the top, because the pressures are higher at the bottom. The flow structure and isotherm 
distribution compare qualitatively with the results reported by Zhang and Ale~ander.’~ The only 
quantitative information that can be used for comparison is the maximum temperature in the crystal 
melt, which according to our simulations is 0.747, very close to the value of 0.737 obtained by Bang  
and Alexander.*’ 

5.  CONCLUSIONS 

An algorithm for the simulation of 3D viscous fiee surface flows has been presented. The algorithm 
performs fixed point iteration to execute alternately flow and free surface updates until convergence is 
achieved. Two updates, namely lunematic and normal stress iterations are formulated to address the 
extremes of large and small capillary numbers. It is observed that the contact angle boundary 
conditions and influence of surface tension gradients can be handled quite naturally through a 
conventional Galerkin finite element method. The free surface is represented using a local coordinate 
system, with the result that general surface shapes can be addressed. The algorithm predicts 
deformations in a direction locally normal to the previous iterate’s shape and can work quite ~ t ~ r a l l y  
with an automatic mesh generator. When the normal stress balance is uncoupled h m  the flow 
solution, the pressures can only be solved with respect to an arbitrary pressure constant. This pressure 
level can be identified either through a volume constraint or from a far-field condition. Examples of 
extrudate swell in 2D and 3D, curtain coating, capillary rise on a cylinder and thermocapillary 
convection in a liquid bridge have been provided to show applicability. Currently, in the next phase of 
this study, we are extending this algorithm to the simulation of transient flows. 
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